Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.077
Filtrar
1.
J Morphol ; 285(1): e21667, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38100741

RESUMO

Serial block-face scanning electron microscopy of the tail tip of post-metamorphic amphioxus (Branchiostoma floridae) revealed some terminal myomeres never been seen before with other techniques. The morphology of these myomeres differed markedly from the chevron shapes of their more anterior counterparts. Histologically, these odd-shaped myomeres ranged from empty vesicles bordered by undifferentiated cells to ventral sacs composed of well-developed myotome, dermatome, and sclerotome. Strikingly, several of these ventral sacs gave rise to a nipple-like dorsal projection composed either entirely of sclerotome or a mixture of sclerotome and myotome. Considered as a whole, from posterior to anterior, these odd-shaped posterior myomeres suggested that their more substantial ventral part may represent the ventral limb of a chevron, while the delicate projection represents a nascent dorsal limb. This scenario contrasts with formation of chevron-shaped myomeres along most of the antero-posterior axis. Although typical chevron formation in amphioxus is surprisingly poorly studied, it seems to be attained by a dorso-ventral extension of the myomere accompanied by the assumption of a V-shape; this is similar to what happens (at least superficially) in developing fishes. Another unusual feature of the odd-shaped posterior myomeres of amphioxus is their especially distended sclerocoels. One possible function for these might be to protect the posterior end of the central nervous system from trauma when the animals burrow into the substratum.


Assuntos
Anfioxos , Músculo Esquelético , Cauda , Microscopia Eletrônica de Volume , Animais , Peixes , Anfioxos/ultraestrutura , Mesoderma/diagnóstico por imagem , Mesoderma/ultraestrutura , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/ultraestrutura , Cauda/diagnóstico por imagem , Cauda/ultraestrutura
2.
J S Afr Vet Assoc ; 93(1): 38a-38h, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35950808

RESUMO

ABSTRACT: Nemaline myopathy - a clinically and genetically complex heterogenous group of disorders - is described uncommonly in humans and rarely in animals, and is characterised by progressive muscle weakness. The diagnosis is confirmed by histological and/or ultrastructural identification of subsarcolemmal, thread-like, rod-shaped structures called nemaline rod bodies within more than 40% of skeletal muscle fibres. These rods contain the Z-line protein, α-actinin, that can be effectively stained in skeletal muscles using Gomori or Masson trichrome and negatively stained with periodic acid-Schiff. Similar rod-like bodies have been found in smaller numbers in dogs with endocrine disorders and occasionally in other conditions in humans. This report is of a six-monthold Pomeranian dog which had progressive exercise intolerance over a two-month period associated with severe disuse muscle atrophy of the thoracic limbs, as well as gradual pelvic limb weakness and regurgitation of food. Baseline diagnostics ruled out endocrinopathies and after histological and ultrastructural evaluation of thoracic limb muscles and nerve biopsies confirmed nemaline myopathy. The clinical course, diagnostic test results, ultrastructure of skeletal muscle and peripheral nerve, gross necropsy findings and histopathology using various stains are described and illustrated.


Assuntos
Doenças do Cão , Miopatias da Nemalina , Animais , Doenças do Cão/diagnóstico , Doenças do Cão/patologia , Cães , Humanos , Debilidade Muscular/veterinária , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Músculo Esquelético/ultraestrutura , Miopatias da Nemalina/complicações , Miopatias da Nemalina/diagnóstico , Miopatias da Nemalina/veterinária
3.
Ultrastruct Pathol ; 46(5): 401-412, 2022 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-35994513

RESUMO

In this study, we investigated the effect of transcranial magnetic stimulation (TMS) on the ultrastructure of muscle fibers and satellite cells in rats with experimental autoimmune encephalomyelitis (EAE). EAE-induced animals were treated with TMS (60 Hz at 0.7 mT) for 2 hours in the morning, once a day, 5 days a week, for 3 weeks, starting on day 15 post-immunization. The rats were sacrificed on day 36 post-immunization, and the soleus muscles were evaluated by light microscopy and transmission electron microscopy. Findings were compared with a non-treated EAE group. Electron microscopy analysis showed the presence of degenerated mitochondria, autophagic vacuoles, and altered myofibrils in non-treated EAE group. This correlates with the presence of acid phosphatase activity in muscle fibers and core-targetoid lesions with desmin immunohistochemistry. Most myonuclei in the EAE group showed apoptotic features. In contrast, EAE induced-TMS treated animals had less ultrastructural changes in the mitochondria and the myofibrils, together with less frequent apoptotic nuclear features. Peripheral desmin+ protrusions, as a marker of active satellite cells, were significantly increased in TMS-treated group. This correlates ultrastructurally with the presence of active features in satellite cells in the TMS group. In conclusion, the attenuation of ultrastructural alterations in muscle fibers and activation response of satellite cells caused by EAE indicated that skeletal muscle had a regenerative response to TMS.


Assuntos
Encefalomielite Autoimune Experimental , Fosfatase Ácida , Animais , Desmina , Encefalomielite Autoimune Experimental/patologia , Encefalomielite Autoimune Experimental/terapia , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/ultraestrutura , Ratos , Estimulação Magnética Transcraniana
4.
J Vis Exp ; (184)2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35758675

RESUMO

Skeletal muscle lipid infiltration, known as myosteatosis, increases with obesity and ageing. Myosteatosis has also recently been discovered as a negative prognostic factor for several other disorders such as cardiovascular disease and cancer. Excessive lipid infiltration decreases muscle mass and strength. It also results in lipotoxicity and insulin resistance depending on total intramyocellular lipid content, lipid droplet (LD) morphology, and subcellular distribution. Fiber type (oxidative vs glycolytic) is also important, since oxidative fibers have a greater capacity to utilize lipids. Because of their crucial implications in pathophysiology, in-depth studies on LD dynamics and function in a fiber type-specific manner are warranted. Herein, a complete protocol is presented for the quantification of intramyocellular lipid content and analysis of LD morphology and subcellular distribution in a fiber type-specific manner. To this end, serial muscle cryosections were stained with the fluorescent dye Bodipy and antibodies against myosin heavy chain isoforms. This protocol enables the simultaneous processing of different muscles, saving time and avoiding possible artifacts and, thanks to a personalized macro created in Fiji, the automatization of LD analysis is also possible.


Assuntos
Resistência à Insulina , Gotículas Lipídicas , Humanos , Gotículas Lipídicas/química , Lipídeos/análise , Músculo Esquelético/ultraestrutura , Cadeias Pesadas de Miosina
5.
Nat Commun ; 13(1): 424, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35058456

RESUMO

Mitochondrial dysfunction is implicated in skeletal muscle insulin resistance. Syntaxin 4 (STX4) levels are reduced in human diabetic skeletal muscle, and global transgenic enrichment of STX4 expression improves insulin sensitivity in mice. Here, we show that transgenic skeletal muscle-specific STX4 enrichment (skmSTX4tg) in mice reverses established insulin resistance and improves mitochondrial function in the context of diabetogenic stress. Specifically, skmSTX4tg reversed insulin resistance caused by high-fat diet (HFD) without altering body weight or food consumption. Electron microscopy of wild-type mouse muscle revealed STX4 localisation at or proximal to the mitochondrial membrane. STX4 enrichment prevented HFD-induced mitochondrial fragmentation and dysfunction through a mechanism involving STX4-Drp1 interaction and elevated AMPK-mediated phosphorylation at Drp1 S637, which favors fusion. Our findings challenge the dogma that STX4 acts solely at the plasma membrane, revealing that STX4 localises at/proximal to and regulates the function of mitochondria in muscle. These results establish skeletal muscle STX4 enrichment as a candidate therapeutic strategy to reverse peripheral insulin resistance.


Assuntos
Dinaminas/metabolismo , Exocitose , Resistência à Insulina , Dinâmica Mitocondrial , Músculo Esquelético/metabolismo , Proteínas Qa-SNARE/metabolismo , Adenilato Quinase/metabolismo , Animais , Respiração Celular , Ciclo do Ácido Cítrico , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Dieta Hiperlipídica , Doxiciclina/farmacologia , Feminino , Glucose/metabolismo , Homeostase , Masculino , Metaboloma , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Músculo Esquelético/ultraestrutura , Especificidade de Órgãos , Fosforilação , Fosfosserina/metabolismo , Condicionamento Físico Animal
6.
J Nutr Biochem ; 100: 108902, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34748920

RESUMO

A diet high in saturated fat leads to skeletal muscle deteriorations including insulin resistance, mitochondrial dysfunction and muscle fiber atrophy. Consumption of long-chain polyunsaturated fatty acids and exercise have shown promise in ameliorating high-fat diet (HFD)-induced oxidative stress and inflammation. However, the impact of extra virgin olive oil (EVOO) on mitochondrial homeostasis in muscle is largely unknown. This study aimed to investigate whether 12 wks of EVOO feeding alone and in conjunction with endurance training could protect against metabolic and mitochondrial dysfunction rat muscle with HFD. Female Sprague-Dawley rats were divided into 4 groups fed a control diet (C), HFD, EVOO diet, and EVOO diet with training (EVOO+T). Mitochondrial enzyme activity and protein content decreased with HFD compared to C, but were restored with EVOO and EVOO+T. EVOO+T elevated muscle cytochrome c and PGC-1α levels. HFD increased muscle proteolytic markers and protein ubiquitination, whereas these effects were not seen in EVOO and EVOO+T. HFD suppressed mitochondrial fusion protein level while increasing fission protein levels, but were restored with EVOO and EVOO+T. Mitophagy marker PINK1 content decreased with HFD, but was unchanged in EVOO and EVOO+T. EVOO+T upregulated autophagy markers, along with decreased phosphorylated/dephosphorylated FoxO3 ratio. Antioxidants enzyme levels were upregulated by EVOO and EVOO+T, and EVOO+T reduced HFD-induced lipid peroxidation. In conclusion, HFD impaired muscle oxidative capacity, promoted protein ubiquitination and mitochondrial fission, and upregulated autophagy markers. Replacement of HFD with EVOO corrected the observed adverse effects, while exercise training in conjunction with EVOO provided additional protection to the muscle.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Azeite de Oliva , Condicionamento Físico Animal , Animais , Antioxidantes/metabolismo , Autofagia , Peso Corporal , Colesterol/sangue , Feminino , Insulina/sangue , Mitocôndrias Musculares/ultraestrutura , Dinâmica Mitocondrial , Músculo Esquelético/ultraestrutura , Oxirredução , Proteólise , Ratos , Ratos Sprague-Dawley , Ubiquitinação
7.
Am J Pathol ; 192(1): 160-177, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34710383

RESUMO

Sigma 1 receptor (Sigmar1) is a widely expressed, multitasking molecular chaperone protein that plays functional roles in several cellular processes. Mutations in the Sigmar1 gene are associated with several distal neuropathies with strong manifestation in skeletal muscle dysfunction with phenotypes like muscle wasting and atrophy. However, the physiological function of Sigmar1 in skeletal muscle remains unknown. Herein, the physiological role of Sigmar1 in skeletal muscle structure and function in gastrocnemius, quadriceps, soleus, extensor digitorum longus, and tibialis anterior muscles was determined. Quantification of myofiber cross-sectional area showed altered myofiber size distribution and changes in myofiber type in the skeletal muscle of the Sigmar1-/- mice. Interestingly, ultrastructural analysis by transmission electron microscopy showed the presence of abnormal mitochondria, and immunostaining showed derangements in dystrophin localization in skeletal muscles from Sigmar1-/- mice. In addition, myopathy in Sigmar1-/- mice was associated with an increased number of central nuclei, increased collagen deposition, and fibrosis. Functional studies also showed reduced endurance and exercise capacity in the Sigmar1-/- mice without any changes in voluntary locomotion, markers for muscle denervation, and muscle atrophy. Overall, this study shows, for the first time, a potential physiological function of Sigmar1 in maintaining healthy skeletal muscle structure and function.


Assuntos
Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Receptores sigma/deficiência , Animais , Colágeno/metabolismo , Distrofina/metabolismo , Fibrose , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/ultraestrutura , Condicionamento Físico Animal , Transporte Proteico , Receptores sigma/metabolismo
8.
Toxins (Basel) ; 13(12)2021 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-34941726

RESUMO

Equinovarus foot is one of the most commonly spasticity related conditions in stroke survivors, leading to an impaired gait and poor functional performances. Notably, spastic muscles undergo a dynamic evolution following typical pathophysiological patterns. Botulinum Neurotoxin Type A (BoNT-A) is the gold standard for focal spasticity treatment, and ultrasound (US) imaging is widely recommended to guide injections and monitor muscle evolution. The role of BoNT-A in influencing muscle fibroadipose degeneration is still unclear. In this study, we analyzed medial gastrocnemius (MG) and soleus (SOL) US characteristics (cross-sectional area, muscle thickness, pennation angle, and mean echo intensity) in 53 patients. MG and SOL alterations, compared to the unaffected side, depend on the spasticity only and not on the BoNT-A treatment. In functionally preserved patients (functional ambulation classification, FAC > 3; modified Ashworth scale, MAS ≤ 2), the ultrasonographic changes of MG compared to ipsilateral SOL observed in the paretic limb alone seems to be due to histological, anatomical, pathophysiological, and biomechanical differences between the two muscles. In subjects with poor walking capability and more severe spasticity, such ipsilateral difference was found in both calves. In conclusion, BoNT-A does not seem to influence muscle degeneration. Similar muscles undergo different evolution depending on the grade of walking deficit and spasticity.


Assuntos
Toxinas Botulínicas Tipo A/uso terapêutico , Pé Torto Equinovaro/tratamento farmacológico , Espasticidade Muscular/tratamento farmacológico , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/ultraestrutura , Fármacos Neuromusculares/uso terapêutico , Acidente Vascular Cerebral/complicações , Idoso , Feminino , Humanos , Injeções Intramusculares , Itália , Masculino , Pessoa de Meia-Idade , Reabilitação do Acidente Vascular Cerebral , Resultado do Tratamento
9.
Cells ; 10(11)2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34831044

RESUMO

Calsequestrin 1 (CASQ1) in skeletal muscle buffers and senses Ca2+ in the sarcoplasmic reticulum (SR). CASQ1 also regulates store-operated Ca2+ entry (SOCE) by binding to stromal interaction molecule 1 (STIM1). Abnormal SOCE and/or abnormal expression or mutations in CASQ1, STIM1, or STIM2 are associated with human skeletal, cardiac, or smooth muscle diseases. However, the functional relevance of CASQ1 along with STIM2 has not been studied in any tissue, including skeletal muscle. First, in the present study, it was found by biochemical approaches that CASQ1 is bound to STIM2 via its 92 N-terminal amino acids (C1 region). Next, to examine the functional relevance of the CASQ1-STIM2 interaction in skeletal muscle, the full-length wild-type CASQ1 or the C1 region was expressed in mouse primary skeletal myotubes, and the myotubes were examined using single-myotube Ca2+ imaging experiments and transmission electron microscopy observations. The CASQ1-STIM2 interaction via the C1 region decreased SOCE, increased intracellular Ca2+ release for skeletal muscle contraction, and changed intracellular Ca2+ distributions (high Ca2+ in the SR and low Ca2+ in the cytosol were observed). Furthermore, the C1 region itself (which lacks Ca2+-buffering ability but has STIM2-binding ability) decreased the expression of Ca2+-related proteins (canonical-type transient receptor potential cation channel type 6 and calmodulin 1) and induced mitochondrial shape abnormalities. Therefore, in skeletal muscle, CASQ1 plays active roles in Ca2+ movement and distribution by interacting with STIM2 as well as Ca2+ sensing and buffering.


Assuntos
Calsequestrina/metabolismo , Músculo Esquelético/metabolismo , Molécula 2 de Interação Estromal/metabolismo , Animais , Cálcio/metabolismo , Calsequestrina/química , Citosol/metabolismo , Dinaminas/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Humanos , Espaço Intracelular/metabolismo , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Modelos Moleculares , Contração Muscular , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/ultraestrutura , Ligação Proteica , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo
10.
Aging (Albany NY) ; 13(22): 24524-24541, 2021 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-34839281

RESUMO

The authors examined the ultrastructure of mitochondrial apparatus of skeletal muscles of naked mole rats (Heterocephalus glaber) from the age of 6 months to 11 years. The obtained results have demonstrated that the mitochondria in skeletal muscles of naked mole rats aged below 5 years is not well-developed and represented by few separate small mitochondria. Mitochondrial reticulum is absent. Starting from the age of 5 years, a powerful mitochondrial structure is developed. By the age of 11 years, it become obvious that the mitochondrial apparatus formed differs from that in the skeletal muscle of adult rats and mice, but resembles that of cardiomyocytes of rats or naked mole rats cardiomyocytes. From the age of 6 months to 11 years, percentage area of mitochondria in the skeletal muscle of naked mole rat is increasing by five times. The growth of mitochondria is mainly driven by increased number of organelles. Such significant growth of mitochondria is not associated with any abnormal changes in mitochondrial ultrastructure. We suppose that specific structure of mitochondrial apparatus developed in the skeletal muscle of naked mole rats by the age of 11 years is necessary for continual skeletal muscle activity of these small mammals burrowing very long holes in stony earth, resembling continual activity of heart muscle. In any case, ontogenesis of naked mole rat skeletal muscles is much slower than of rats and mice (one more example of neoteny).


Assuntos
Envelhecimento/fisiologia , Mitocôndrias/ultraestrutura , Músculo Esquelético/ultraestrutura , Fenômenos Fisiológicos Musculoesqueléticos , Animais , Microscopia Eletrônica , Ratos-Toupeira/fisiologia
11.
J Cell Biol ; 220(12)2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34633413

RESUMO

The cavin proteins are essential for caveola biogenesis and function. Here, we identify a role for the muscle-specific component, Cavin4, in skeletal muscle T-tubule development by analyzing two vertebrate systems, mouse and zebrafish. In both models, Cavin4 localized to T-tubules, and loss of Cavin4 resulted in aberrant T-tubule maturation. In zebrafish, which possess duplicated cavin4 paralogs, Cavin4b was shown to directly interact with the T-tubule-associated BAR domain protein Bin1. Loss of both Cavin4a and Cavin4b caused aberrant accumulation of interconnected caveolae within the T-tubules, a fragmented T-tubule network enriched in Caveolin-3, and an impaired Ca2+ response upon mechanical stimulation. We propose a role for Cavin4 in remodeling the T-tubule membrane early in development by recycling caveolar components from the T-tubule to the sarcolemma. This generates a stable T-tubule domain lacking caveolae that is essential for T-tubule function.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Sarcolema/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Cavéolas/metabolismo , Linhagem Celular , Embrião não Mamífero/metabolismo , Imageamento Tridimensional , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/ultraestrutura , Músculo Esquelético/ultraestrutura , Ligação Proteica , Sarcolema/ultraestrutura , Peixe-Zebra/embriologia
12.
Int J Mol Sci ; 22(19)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34638903

RESUMO

Aging is characterized by a progressive decline of skeletal muscle (SM) mass and strength which may lead to sarcopenia in older persons. To date, a limited number of studies have been performed in the old SM looking at the whole, complex network of the extracellular matrix (i.e., matrisome) and its aging-associated changes. In this study, skeletal muscle proteins were isolated from whole gastrocnemius muscles of adult (12 mo.) and old (24 mo.) mice using three sequential extractions, each one analyzed by liquid chromatography with tandem mass spectrometry. Muscle sections were investigated using fluorescence- and transmission electron microscopy. This study provided the first characterization of the matrisome in the old SM demonstrating several statistically significantly increased matrisome proteins in the old vs. adult SM. Several proteomic findings were confirmed and expanded by morphological data. The current findings shed new light on the mutually cooperative interplay between cells and the extracellular environment in the aging SM. These data open the door for a better understanding of the mechanisms modulating myocellular behavior in aging (e.g., by altering mechano-sensing stimuli as well as signaling pathways) and their contribution to age-dependent muscle dysfunction.


Assuntos
Envelhecimento/metabolismo , Matriz Extracelular/metabolismo , Músculo Esquelético/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Fatores Etários , Animais , Cromatografia Líquida , Colágeno/metabolismo , Laminina/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Microscopia Eletrônica de Transmissão , Músculo Esquelético/ultraestrutura , Isoformas de Proteínas/metabolismo , Subunidades Proteicas/metabolismo , Espectrometria de Massas em Tandem
13.
Nutrients ; 13(10)2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34684660

RESUMO

Decreased energy expenditure and chronically positive energy balance contribute to the prevalence of obesity and associated metabolic dysfunctions, such as dyslipidemia, hepatic fat accumulation, inflammation, and muscle mitochondrial defects. We investigated the effects of Chrysanthemum morifolium Ramat flower extract (CE) on obesity-induced inflammation and muscle mitochondria changes. Sprague-Dawley rats were randomly divided into four groups and fed either a normal diet, 45% high-fat diet (HF), HF containing 0.2% CE, or 0.4% CE for 13 weeks. CE alleviated HF-increased adipose tissue mass and size, dyslipidemia, hepatic fat deposition, and systematic inflammation, and increased energy expenditure. CE significantly decreased gene expression involved in adipogenesis, pro-inflammation, and the M1 macrophage phenotype, as well as glycerol-3-phosphate dehydrogenase (GPDH) and nuclear factor-kappa B (NF-kB) activities in epididymal adipose tissue. Moreover, CE supplementation improved hepatic fat accumulation and modulated gene expression related to fat synthesis and oxidation with an increase in adenosine monophosphate-activated protein kinase (AMPK) activity in the liver. Furthermore, CE increased muscle mitochondrial size, mitochondrial DNA (mtDNA) content, and gene expression related to mitochondrial biogenesis and function, including sirtuin 1 (SIRT1), peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), and PGC-1α-target genes, along with AMPK-SIRT1 activities in the skeletal muscle. These results suggest that CE attenuates obesity-associated inflammation by modulating the muscle AMPK-SIRT1 pathway.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Chrysanthemum/química , Flores/química , Inflamação/tratamento farmacológico , Mitocôndrias Musculares/metabolismo , Obesidade/complicações , Extratos Vegetais/uso terapêutico , Sirtuína 1/metabolismo , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Adipócitos/patologia , Adipogenia/efeitos dos fármacos , Adipogenia/genética , Tecido Adiposo Branco/metabolismo , Animais , Peso Corporal/efeitos dos fármacos , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Dieta Hiperlipídica , Dislipidemias/complicações , Metabolismo Energético/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Hipertrofia , Inflamação/etiologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Mitocôndrias Musculares/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/ultraestrutura , Extratos Vegetais/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley
14.
Front Endocrinol (Lausanne) ; 12: 697204, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34594301

RESUMO

Skeletal muscles secrete various factors, such as proteins/peptides, nucleotides, and metabolites, which are referred to as myokines. Many of these factors are transported into extracellular bodily fluids in a free or protein-bound form. Furthermore, several secretory factors have been shown to be wrapped up by small vesicles, particularly exosomes, secreted into circulation, and subsequently regulate recipient cells. Thus, exosome contents can be recognized as myokines. In recipient cells, proteins, microRNAs, and metabolites in exosomes can regulate the expression and activity of target proteins associated with nutrient metabolism and immune function. The levels of circulating exosomes and their contents are altered in muscle disorders and metabolic-related states, such as metabolic dysfunction, sarcopenia, and physical fitness. Therefore, such circulating factors could mediate various interactions between skeletal muscle and other organs and may be useful as biomarkers reflecting physiological and pathological states associated with muscular function. Here, this review summarizes secretory regulation of muscle-derived exosomes. Their metabolic and immunological roles and the significance of their circulating levels are also discussed.


Assuntos
Exossomos/fisiologia , Músculo Esquelético/imunologia , Músculo Esquelético/metabolismo , Animais , Biomarcadores/metabolismo , Comunicação Celular/genética , Comunicação Celular/imunologia , Metabolismo Energético/genética , Metabolismo Energético/fisiologia , Humanos , Sistema Imunitário/metabolismo , Sistema Imunitário/fisiologia , MicroRNAs/genética , MicroRNAs/metabolismo , Músculo Esquelético/citologia , Músculo Esquelético/ultraestrutura
15.
Science ; 374(6565): 355-359, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34648328

RESUMO

Regeneration of skeletal muscle is a highly synchronized process that requires muscle stem cells (satellite cells). We found that localized injuries, as experienced through exercise, activate a myofiber self-repair mechanism that is independent of satellite cells in mice and humans. Mouse muscle injury triggers a signaling cascade involving calcium, Cdc42, and phosphokinase C that attracts myonuclei to the damaged site via microtubules and dynein. These nuclear movements accelerate sarcomere repair and locally deliver messenger RNA (mRNA) for cellular reconstruction. Myofiber self-repair is a cell-autonomous protective mechanism and represents an alternative model for understanding the restoration of muscle architecture in health and disease.


Assuntos
Núcleo Celular/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/lesões , Músculo Esquelético/fisiologia , Regeneração , Sarcômeros/fisiologia , Animais , Cálcio/metabolismo , Dineínas/metabolismo , Camundongos , Microtúbulos/metabolismo , Contração Muscular , Fibras Musculares Esqueléticas/ultraestrutura , Músculo Esquelético/ultraestrutura , RNA Mensageiro/metabolismo , Transdução de Sinais , Proteína cdc42 de Ligação ao GTP/metabolismo
16.
Sci Rep ; 11(1): 18161, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34518586

RESUMO

Megaconial Congenital Muscular Dystrophy (CMD) is a rare autosomal recessive disorder characterized by enlarged mitochondria located mainly at the periphery of muscle fibers and caused by mutations in the Choline Kinase Beta (CHKB) gene. Although the pathogenesis of this disease is not well understood, there is accumulating evidence for the presence of mitochondrial dysfunction. In this study, we aimed to investigate whether imbalanced mitochondrial dynamics affects mitochondrial function and bioenergetic efficiency in skeletal muscle cells of Megaconial CMD. Immunofluorescence, confocal and transmission electron microscopy studies revealed impaired mitochondrial network, morphology, and localization in primary skeletal muscle cells of Megaconial CMD. The organelle disruption was specific only to skeletal muscle cells grown in culture. The expression levels of mitochondrial fission proteins (DRP1, MFF, FIS1) were found to be decreased significantly in both primary skeletal muscle cells and tissue sections of Megaconial CMD by Western blotting and/or immunofluorescence analysis. The metabolomic and fluxomic analysis, which were performed in Megaconial CMD for the first time, revealed decreased levels of phosphonucleotides, Krebs cycle intermediates, ATP, and altered energy metabolism pathways. Our results indicate that reduced mitochondrial fission and altered mitochondrial energy metabolism contribute to mitochondrial dysmorphology and dysfunction in the pathogenesis of Megaconial CMD.


Assuntos
Metabolismo Energético , Dinâmica Mitocondrial , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofias Musculares/metabolismo , Células Cultivadas , Fluorescência , Humanos , Análise do Fluxo Metabólico , Metabolômica , Proteínas Mitocondriais/metabolismo , Fibras Musculares Esqueléticas/patologia , Fibras Musculares Esqueléticas/ultraestrutura , Músculo Esquelético/ultraestrutura
17.
JCI Insight ; 6(17)2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34494555

RESUMO

Stromal interaction molecule 1 (STIM1), the sarcoplasmic reticulum (SR) transmembrane protein, activates store-operated Ca2+ entry (SOCE) in skeletal muscle and, thereby, coordinates Ca2+ homeostasis, Ca2+-dependent gene expression, and contractility. STIM1 occupies space in the junctional SR membrane of the triads and the longitudinal SR at the Z-line. How STIM1 is organized and is retained in these specific subdomains of the SR is unclear. Here, we identified desmin, the major type III intermediate filament protein in muscle, as a binding partner for STIM1 based on a yeast 2-hybrid screen. Validation of the desmin-STIM1 interaction by immunoprecipitation and immunolocalization confirmed that the CC1-SOAR domains of STIM1 interact with desmin to enhance STIM1 oligomerization yet limit SOCE. Based on our studies of desmin-KO mice, we developed a model wherein desmin connected STIM1 at the Z-line in order to regulate the efficiency of Ca2+ refilling of the SR. Taken together, these studies showed that desmin-STIM1 assembles a cytoskeletal-SR connection that is important for Ca2+ signaling in skeletal muscle.


Assuntos
Desmina/genética , Regulação da Expressão Gênica , Músculo Esquelético/metabolismo , RNA/genética , Molécula 1 de Interação Estromal/genética , Animais , Sinalização do Cálcio , Células Cultivadas , Desmina/biossíntese , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Camundongos , Microscopia Eletrônica de Transmissão , Modelos Animais , Músculo Esquelético/ultraestrutura , Retículo Sarcoplasmático/metabolismo , Molécula 1 de Interação Estromal/biossíntese
18.
Rev. bras. med. esporte ; 27(3): 295-298, July-Sept. 2021. graf
Artigo em Inglês | LILACS | ID: biblio-1288566

RESUMO

ABSTRACT Introduction Skeletal muscle injuries account for 10% to 50% of treadmill sports injuries. Insulin-like growth factor (IGF) is a family of polypeptides with both insulin-like anabolic and growth-promoting effects. Sports play a vital role in the recovery of skeletal muscle injuries. Objective The paper analyzes the ability of insulin-like growth factor 1 (IGF-1) to repair skeletal muscle injury caused by treadmill exercise. Method We injected drugs under the wound after exercise-induced injury in rats. The control group was injected with saline, and the experimental group was injected with an insulin-like growth factor. We conduct histological and electron microscopic structural analysis of rats, Results: After an injury, the experimental group formed a basal lamina protective film earlier than the control group, activated myoblasts, formed myofilaments, formed myotubes, and fused into muscle fibers earlier than the control group. The healing quality was also better. The experimental group was endogenous. The mRNA content of sex IGF-1 and IGF-2 both increased earlier than the control group. Conclusion Local injection of exogenous insulin-like growth factor-1 can stimulate the proliferation of myoblasts and accelerate the post-traumatic repair process of skeletal muscle caused by treadmill sports. Level of evidence II; Therapeutic studies - investigation of treatment results.


RESUMO Introdução As lesões do músculo esquelético representam de 10% a 50% das lesões em esteira esportiva. O fator de crescimento semelhante à insulina (IGF) é uma família de polipeptídeos com efeitos anabólicos e de promoção do crescimento semelhantes à insulina. Os esportes desempenham um papel vital na recuperação de lesões musculares esqueléticas. Objetivo o artigo analisa a capacidade do fator de crescimento semelhante à insulina 1 (IGF-1) em reparar lesões musculares esqueléticas causadas por exercícios em esteira. Método Injetamos drogas sob a ferida após lesão induzida por exercício em ratos. O grupo controle foi injetado com solução salina e o grupo experimental foi injetado com um fator de crescimento semelhante à insulina. Realizamos análises histológicas e microscópicas eletrônicas estruturais de ratos. Resultados Após a lesão, o grupo experimental formou um filme protetor da lâmina basal mais cedo do que o grupo controle, mioblastos ativados, miofilamentos formados, miotubos formados e fundidos em fibras musculares mais cedo do que o grupo controle. A qualidade da cura também foi melhor. O grupo experimental era endógeno. O conteúdo do sexo IGF-1 e IGF-2 mRNA aumentou mais cedo do que no grupo de controle. Conclusão A injeção local de fator de crescimento semelhante à insulina 1 exógeno pode estimular a proliferação de mioblastos e acelerar o processo de reparo muscular esquelético pós-traumático causado por esportes em esteira. Nível de evidência II; Estudos terapêuticos: investigação dos resultados do tratamento.


RESUMEN Introducción Las lesiones del músculo esquelético representan del 10% al 50% de las lesiones deportivas en cinta. El factor de crecimiento semejante a la insulina (IGF) es una familia de polipéptidos con efectos anabólicos y estimulantes del crecimiento semejantes a la insulina. Los deportes juegan un papel vital en la recuperación de las lesiones del músculo esquelético. Objetivo El artículo analiza la capacidad del factor de crecimiento semejante a la insulina 1 (IGF-1) para reparar la lesión del músculo esquelético causada por el ejercicio en cinta. Método inyectamos drogas debajo de la herida después de una lesión inducida por el ejercicio en ratas. Al grupo de control se le inyectó solución salina y al grupo experimental se le inyectó un factor de crecimiento semejante a la insulina. Realizamos análisis estructurales histológicos y microscópicos electrónicos de ratas, Resultados: Después de una lesión, el grupo experimental formó una película protectora de la lámina basal antes que el grupo de control, activó mioblastos, formó miofilamentos, formó miotubos y se fusionó en fibras musculares antes que el grupo de control. La calidad de curación también fue mejor. El grupo experimental fue endógeno. El contenido de ARNm de IGF-1 e IGF-2 de sexo aumentaron antes que en el grupo de control. Conclusión La inyección local de factor de crecimiento semejante a la insulina 1 exógeno puede estimular la proliferación de mioblastos y acelerar el proceso de reparación postraumático del músculo esquelético causado por los deportes en cinta. Nivel de evidencia II; Estudios terapéuticos: investigación de los resultados del tratamiento.


Assuntos
Humanos , Masculino , Ratos , Cicatrização/efeitos dos fármacos , Fator de Crescimento Insulin-Like I/administração & dosagem , Músculo Esquelético/lesões , Doença Aguda , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/ultraestrutura , Modelos Animais de Doenças
19.
Physiol Rep ; 9(16): e15016, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34427401

RESUMO

This study aimed to examine the effects of voluntary wheel running on cancer cachexia-induced mitochondrial alterations in mouse skeletal muscle. Mice bearing colon 26 adenocarcinoma (C26) were used as a model of cancer cachexia. C26 mice showed a lower gastrocnemius and plantaris muscle weight, but 4 weeks of voluntary exercise rescued these changes. Further, voluntary exercise attenuated observed declines in the levels of oxidative phosphorylation proteins and activities of citrate synthase and cytochrome c oxidase in the skeletal muscle of C26 mice. Among mitochondrial morphology regulatory proteins, mitofusin 2 (Mfn2) and dynamin-related protein 1 (Drp1) were decreased in the skeletal muscle of C26 mice, but exercise resulted in similar improvements as seen in markers of mitochondrial content. In isolated mitochondria, 4-hydroxynonenal and protein carbonyls were elevated in C26 mice, but exercise blunted the increases in these markers of oxidative stress. In addition, electron microscopy revealed that exercise alleviated the observed increase in the percentage of damaged mitochondria in C26 mice. These results suggest that voluntary exercise effectively counteracts mitochondrial dysfunction to mitigate muscle loss in cachexia.


Assuntos
Caquexia/prevenção & controle , Mitocôndrias Musculares/ultraestrutura , Neoplasias/complicações , Condicionamento Físico Animal/métodos , Animais , Caquexia/etiologia , Citrato (si)-Sintase/metabolismo , Dinaminas/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Masculino , Camundongos , Mitocôndrias Musculares/metabolismo , Atividade Motora , Músculo Esquelético/metabolismo , Músculo Esquelético/ultraestrutura , Estresse Oxidativo , Carbonilação Proteica
20.
JCI Insight ; 6(19)2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34437302

RESUMO

Myosin binding protein-C slow (sMyBP-C) comprises a subfamily of cytoskeletal proteins encoded by MYBPC1 that is expressed in skeletal muscles where it contributes to myosin thick filament stabilization and actomyosin cross-bridge regulation. Recently, our group described the causal association of dominant missense pathogenic variants in MYBPC1 with an early-onset myopathy characterized by generalized muscle weakness, hypotonia, dysmorphia, skeletal deformities, and myogenic tremor, occurring in the absence of neuropathy. To mechanistically interrogate the etiologies of this MYBPC1-associated myopathy in vivo, we generated a knock-in mouse model carrying the E248K pathogenic variant. Using a battery of phenotypic, behavioral, and physiological measurements spanning neonatal to young adult life, we found that heterozygous E248K mice faithfully recapitulated the onset and progression of generalized myopathy, tremor occurrence, and skeletal deformities seen in human carriers. Moreover, using a combination of biochemical, ultrastructural, and contractile assessments at the level of the tissue, cell, and myofilaments, we show that the loss-of-function phenotype observed in mutant muscles is primarily driven by disordered and misaligned sarcomeres containing fragmented and out-of-register internal membranes that result in reduced force production and tremor initiation. Collectively, our findings provide mechanistic insights underscoring the E248K-disease pathogenesis and offer a relevant preclinical model for therapeutic discovery.


Assuntos
Proteínas de Transporte/genética , Hipotonia Muscular/genética , Debilidade Muscular/genética , Músculo Esquelético/fisiopatologia , Doenças Musculares/genética , Sarcômeros/genética , Tremor/genética , Animais , Feminino , Técnicas de Introdução de Genes , Heterozigoto , Masculino , Camundongos , Hipotonia Muscular/fisiopatologia , Debilidade Muscular/fisiopatologia , Músculo Esquelético/ultraestrutura , Doenças Musculares/fisiopatologia , Mutação de Sentido Incorreto , Pletismografia Total , Músculos Respiratórios/fisiopatologia , Sarcômeros/metabolismo , Sarcômeros/fisiologia , Sarcômeros/ultraestrutura , Tremor/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...